buktikan bahwa 1 3 5 2n 1 n2

3 Prinsip: Prinsip Induksi Matematika Untuk š‘˜ = {š‘˜0 , š‘˜0 + 1, š‘˜0 + 2, } dengan š‘˜0 = sebarang bilangan bulat maka š‘ (š‘›) adalah Tautologi jika : a. š‘ (š‘˜0 ) benar b. āˆ€š‘˜ ≄ š‘˜0 , š‘ (š‘˜) → š‘ (š‘˜ + 1) 4. Prosedur: Langkah-langkah pembuktian dengan Induksi Matematika : a. Buktikanbahwa : 1 + 3 + 5 + + n = (2n - 1) = n2 untuk setiap n bilangan bulat positif Jawab : q Basis : Untuk n = 1 akan diperoleh : Kesimpulan : 1 + 3 + 5 + + n = (2n - 1) = n2 Untuk setiap bilangan bulat positif n Contoh 3 : Buktikan bahwa : N 3 + 2n adalah kelipatan 3 untuk setiap n bilangan bulat positif Jawabanpaling sesuai dengan pertanyaan Buktikan bahwa: P_(n)-=(1)/(2xx4)+(1)/(4xx6)+dots +(1)/((2n)(2n+2))=(n)/(4(n+1)) BasisInduksi: tunjukan p(1) benar 2. Hipotesa induksi: Misal p(n) benar untuk semua bilangan positif n ≄ 1. 3. Buktikan bahwa p(n+1) benar. Contoh: 1. Tunjukan bahwa 1 + 2 + 3 ++ n = n(n + 1) untuk n≄1. 2 ∓1 + 3 + 5 ++ (2n - 1) = n2, untuk n bilangan pasitif. 2. Untuk n ≄ 1, tujukan bahwa n3 + 2n adalah kelipatan 3 Iacuek saja dicibir, malah makin membuktikan bahwa ia amat bersyukur dengan profesi suami. " Aku bangga kok suamiku sopir," ungkap Egis dikutip dari akun TikTok-nya pada Kamis 4 Agustus 2022. Antenne 1 Stuttgart Single Der Woche. Kelas 11 SMAInduksi MatematikaPenerapan Induksi MatematikaBuktikan dengan induksi matematika bahwa 1^2+2^2+3^2+...+n^2 = nn+12n+1/6 bernilai benar untuk semua n bilangan Induksi MatematikaInduksi MatematikaALJABARMatematikaRekomendasi video solusi lainnya0314Nilai sigma n=2 21 5n-6 = ...0252Buktikan bahwa 3 + 7 + 11 + ... + 4n-1 = n2n + 1 untu...0356Notasi sigma yang ekuivalen dengan sigma k=1 10 2k^2+8k+...0224Buktikan bahwa 2^2n-1 habis dibagi 3 untuk semua bilang...Teks videoDi saat ini kita diperintahkan untuk membuktikan dengan induksi matematika. Nah di sini kan untuk bernilai benar untuk semua n bilangan asli bilangan asli N = 1 ya 2 3 dan seterusnya Kemudian untuk menggunakan induksi matematika itu ada tiga tahapan yang pertama kita buktikan bahwa n itu = 1 itu benar bernilai benar ya N = 1 benar Jadi kita buktikan ke kiri dan dirumuskan itu sama dengan ya nanti kita ubah ikan m kuadrat di ruas kiri berarti kita Ubah menjadi 1 kuadrat = 1 dikali 1 dikali 2 dikali 1 + 1 dibagi 61 = ini kan menjadi 1 dikali 1 + 122 + 13 per 62 X 366 / 61 berarti 1 = 1, maka ini terbukti benar untuk N = 1 kemudian kedua kita asumsikan bahwa ketika n = k itu benar berarti di sini kan 1 kuadrat kita tulis ya deret kuadrat ditambah 2 kuadrat + 3 kuadrat ditambah sampai dengan n kuadrat. Nah ini kita Ubah menjadi k kuadrat = jika kita ubah juga di sini ke adik Alika + 1 dikali dengan 2 dikali kah + 1 dibagi 6 nada sini yang akan membantu kita untuk penyelesaian yang berikutnya yang berikutnya itu kan kita buktikan buktikan bahwa n = k + 1 itu benar yah, tarikan deretnya 1 kuadrat kita lagi ditambah 2 kuadrat ditambah 3 kuadrat ditambah sampai dengan sini kan kita Kak + 1 itu setelah dari KAA Berarti sebelum kabel satu tindakan ketika kuadrat terlebih dahulu kemudian ditambah dengan K + 1 telah jadi kan jadi Kak + 1 kuadrat seperti ini enakan k + 11 kuadrat = disini kita ubah jadi kapal 1 dikali dengan Kak + 1 ditambah 1 ya ini kita ubah Jadi kapan 1 kemudian 2 x + 1 + 1 / 6 Nah tadi kan 1 kuadrat + 2 kuadrat sampai dengan k kuadrat itu adalah k dikali 1 dikali 2 k + 1 dibagi 6 akan kita Ubah menjadi Kadi x + 1 dikali 2 x + 1 dibagi 6 kemudian ditambah ini kita kencan ya Jadi kalau 1 dikali x + 1 = ini menjadi k + 1 dikali k + 22 K + 2 ya 2 * 2 * 2 * 12 kemudian ditambah 1 dibagi 6 Nah dari sini kita akan membuktikan bahwa luas yang di kiri akan sama dengan ruas kanan nih kemudian disini kita samakan penyebutnya kah kak + 1 dikali 2 k + 1 kita perhatikan * 6 ya Kak + 1 dikali x + 1 dibagi 6 = 2 + 1 x + 2 menjadi 2 k + 3 / 6 kemudian ini kita kalikan Kak dengan 2 k + 1 ya. Tadi kita pindahkan dulu deh. Nah seperti ini ya kita kalikan yang ini dengan ini jadi Kak dikali 2 k menjadi 2 k kuadrat kemudian ditambah kah kemudian dikali 1 ditambah 6 k + 6 kemudian dikali dengan K + 1 dibagi 6 ini sama ya kemudian kita lanjut ke halaman berikutnya di sini sudah sampai variabel yang di sini k + 1 k + 1, maka kita bisa menjumlahkan 2 k kuadrat + k dengan 66 berarti 2 k kuadrat + k ditambah 6 k + 6 dikalikan dengan K + 1 dibagi 6 jadi 2 k kuadrat + 7 k + 6 Kak + 1 / 6 kita faktorkan yah 2 k kuadrat + 7 k + 622 k kemudian 2 k ya ada disini dua jenis per 2 dikali 2 kasih 2 kah kemudian 2 dikali 16 dikali 12 dan ketika jumlah 7 berarti + 4 dan + 3 b / 2 menjadi K + 2 dan 2 k + 3 apa di sini Kak + 22 k + 3 x + 1 = 6 maka terbukti terbukti bahwa ruas kiri sama dengan ruas kanan oke sekian sampai jumpa di soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Kelas 11 SMAInduksi MatematikaPenerapan Induksi MatematikaDengan induksi matematika, buktikan bahwa 1+3+5+7+...+2n-1 = n^2 berlaku untuk setiap n bilangan Induksi MatematikaInduksi MatematikaALJABARMatematikaRekomendasi video solusi lainnya0314Nilai sigma n=2 21 5n-6 = ...0252Buktikan bahwa 3 + 7 + 11 + ... + 4n-1 = n2n + 1 untu...0356Notasi sigma yang ekuivalen dengan sigma k=1 10 2k^2+8k+...0224Buktikan bahwa 2^2n-1 habis dibagi 3 untuk semua bilang...Teks videountuk melakukan pembuktian induksi matematika terdapat langkah-langkah berikut ini jika PPN merupakan pernyataan Nya maka pertama kita buktikan bahwa benar untuk N = 1 lalu kita asumsikan PN benar untuk n = k dan kita buktikan PN akan benar juga untuk n = k + 1 jika p k benar maka p k + 1 benar untuk X lebih besar sama dengan n sekarang kita lihat bahwa ini merupakan pernyataan nya untuk N = 1 kita lihat bahwa ini adalah s n dan 2 n min 1 ini adalah UN 1 akan = 1 maka kita untuk N = 1 di langkah pertama kita tinggal substitusikan satu ini ke 2 n min 1 = n kuadrat kita gantian dengan angka 1 menjadi 2 dikali 1 dikurang 1 = 1 kuadrat 2 dikurang 1 = 11 = 1, maka ini benar sekarang untuk Langkah kedua kita asumsikan bahwa PN benar untuk n = k p n nya adalah 13 + 5 + 7 + titik-titik + 2 n min 1 = N kuadrat untuk n = k kita ganti n nya menjadi 1 + 3 + 5 + 7 + titik-titik + 2 k min 1 = k kuadrat kita asumsikan bahwa ini benar maka untuk langkah ke-3 n = k + 1 sekarang kita memiliki 1 + 3 + 5 + 7 + titik-titik titik di 2 k min 1 Karena sekarang n = k + 1 maka dari itu kita akan menambahkan satu suku di belakang sehingga 2 k min 1 ini akan menjadi suku sebelumnya disini ditambah 2 kakaknya diganti jadi k + 1 dikurang 1 = disini k + 1 kuadrat lalu kita lihat dari Langkah kedua tadi kita sudah memiliki bahwa ini adalah k kuadrat sehingga dapat kita tulis di sini ka kwarda ditambah dengan 2 x + 1 dikurang 1 = X + 1 kuadrat Sekarang kita akan membuktikan bahwa ruas kiri akan sama dengan ruas kanan kita proses luas kirinya menjadi kuadrat ditambah 2 nya kita kalikan kedalam menjadi Plus Kakak + 2 min 1 = k kuadrat + 2 k + 1 lalu kita faktorkan k kuadrat + 2 k + 1 menjadi Cu + 1 dikali x + 1 = x + 1 * x + 1 adalah k + 1 kuadrat sekarang dapat kita lihat bahwa di ruas kanan pun k + 1 kuadrat maka dengan ruas kiri sama dengan ruas kanan ini sudah terbukti inilah jawabannya sampai jumpa di pembahasan soal selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Induksi matematika Contoh 1 Buktikan bahwa 1 + 2 + 3 + … + n = ½ nn+1 untuk setiap n bilangan integer positif Jawab q Basis Untuk n = 1 akan diperoleh 1 = ½ 1 . 1+1 ->1 = 1 q Induksi misalkan untuk n = k asumsikan 1 + 2 + 3 + …+ k = ½ k k+1 q adib. Untuk n = k+1 berlaku 1 + 2 + 3 + …+ k+1 = ½ k+1 k+2 Jawab q 1 + 2 + 3 + …+ k+1 = k+1 k+2 / 2 1 + 2 + 3 + …+ k + k+1 = k+1 k+2 / 2 k k+1 / 2 + k+1 = k+1 k+2 / 2 k+1 [ k/2 +1 ] = k+1 k+2 / 2 k+1 ½ k+2 = k+1 k+2 / 2 k+1 k+2 / 2 = k+1 k+2 / 2 q Kesimpulan 1 + 2 + 3 + …+ n = ½ n n +1 Untuk setiap bilanga bulat positif n Contoh 2 Buktikan bahwa 1 + 3 + 5 + … + n = 2n – 1 = n2 untuk setiap n bilangan bulat positif Jawab q Basis Untuk n = 1 akan diperoleh 1 = 12 -> 1 = 1 q Induksi misalkan untuk n = k asumsikan 1 + 3 + 5 + …+ 2k – 1 = k2 q adib. Untuk n = k + 1 berlaku 1 + 3 + 5 + …+ 2 k + 1 – 1 = k + 12 1 + 3 + 5 + …+ 2k + 1 = k + 12 1 + 3 + 5 + …+ 2k + 1 – 2 + 2k + 1 = k + 12 1 + 3 + 5 + …+ 2k – 1 + 2k + 1 = k + 12 k 2 + 2K + 1 = k + 12 k 2 + 2K + 1 = k 2 + 2K + 1 Kesimpulan 1 + 3 + 5 + … + n = 2n – 1 = n2 Untuk setiap bilangan bulat positif n Contoh 3 Buktikan bahwa N 3 + 2n adalah kelipatan 3 untuk setiap n bilangan bulat positif Jawab q Basis Untuk n = 1 akan diperoleh 1 = 13 + 21 -> 1 = 3 , kelipatan 3 q Induksi misalkan untuk n = k asumsikan k 3 + 2k = 3x q adib. Untuk n = k + 1 berlaku k + 13 + 2k + 1 adalah kelipatan 3 k 3 + 3k 2 + 3 k+1 + 2k + 2 k 3 + 2k + 3k 2 + 3k + 3 k 3 + 2k + 3 k 2 + k + 1 Induksi 3x + 3 k 2 + k + 1 3 x + k 2 + k + 1 Kesimpulan N 3 + 2n adalah kelipatan 3 Untuk setiap bilangan bulat positif n

buktikan bahwa 1 3 5 2n 1 n2